

Background and Problem Statement

- More than 795,000 strokes occur per year in the U.S. [1]
- The Hamster exercises horizontal arm movement in debilitated patients
- More compact and affordable than alternatives
- The Flying Squirrel incorporates vertical motion in addition to the features of its predecessor
- Sponsored by Dr. Razavian, who specializes in robotics and control algorithms

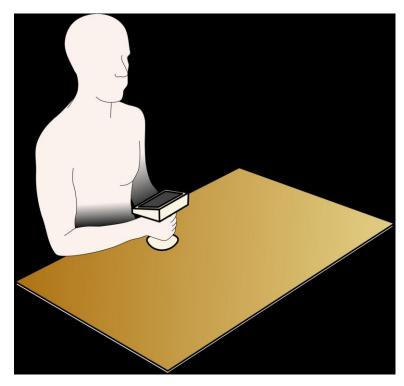
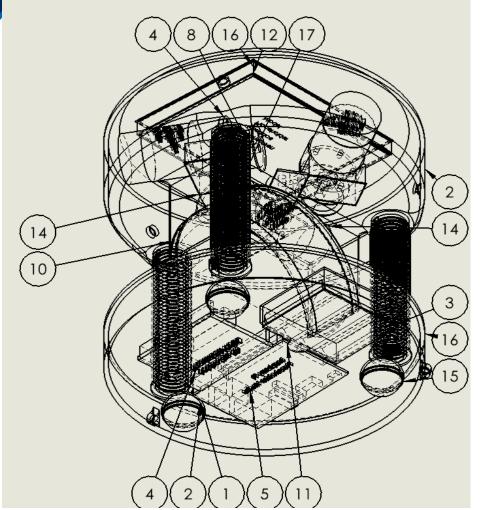



Figure 1: Representation of Hamster in Use

Top Level

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
2	Body_Bottom	Bottom Shell	1
4	Arduino_Placeholder	Microcontroller (Arduino)	1
14	Motor_Placeholder	Optical Encoder Motor	3
4	Motor Mount	Motor Mount	3
17	Winch	Motor Winch	3
12	Body_Lid	Lid for Top Shell	1
16	Touchscreen_Placehol der	Touchscreen Interface	1
2	Base_Bottom	Bottom Base	1
3	BatteryPack	Battery pack	1
5	RaspPi_Placeholder	Microcomputer (Raspberry Pi)	1
11	Battery_Cover	Battery Lid	1
14	Motor_Driver_Placehol der	Motor Driver	3
1	Wheel	Roller Bearing	3
15	Wheel_Washer	Roller Bearing Washer	3
16	Base_Lid	Base Lid	1
8	Corkscrew	Lifting Screw	3
10	Handle	Handle	1

Figure 3:BOM

Figure 2: Top level

Top Level

One-line wire diagram

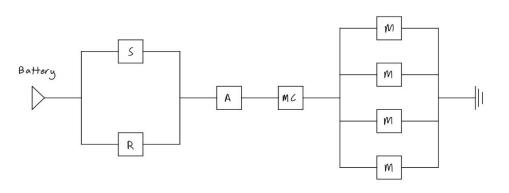


Figure 4: One Line diagram

Wire Gauge

- Approximately 10 amps running through robot.
- 16-gauge wire necessary

Functions

- Moves horizontally through wire tension
- Moves vertically by screw rotation
- Performs routines based on user input (Touch screen)
- Detects user force application through force sensor
- Slides on roller bearings

Top Level

Suction cup

Figure 5: Suction Cup

Clamp

Figure 6: C Clamp

Control Scheme

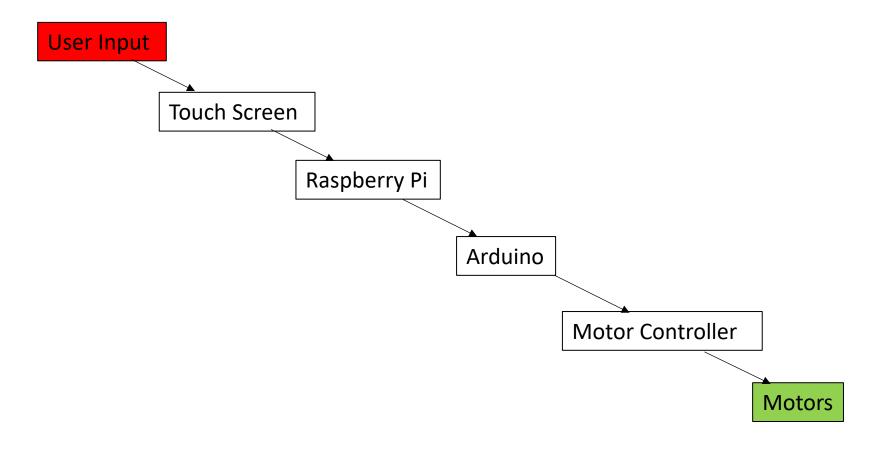
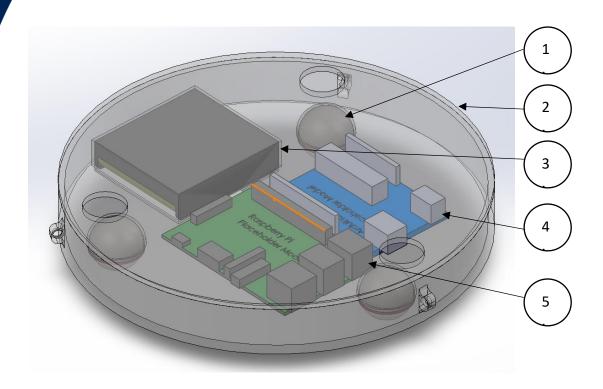



Figure 7: Control Scheme

Important Sub-Assemblies

Bottom Sub-Assembly

- 1. Rollers/Bearings
- 2. Body Shell
- 3. Batteries
- 4. Microcontroller (Arduino)
- 5. Microcomputer (Raspberry pi)
- 6. Lift Motor
- 7. Drive Belt

Figure 8: Sub-Assemblies Bottom

Important Sub-Assemblies

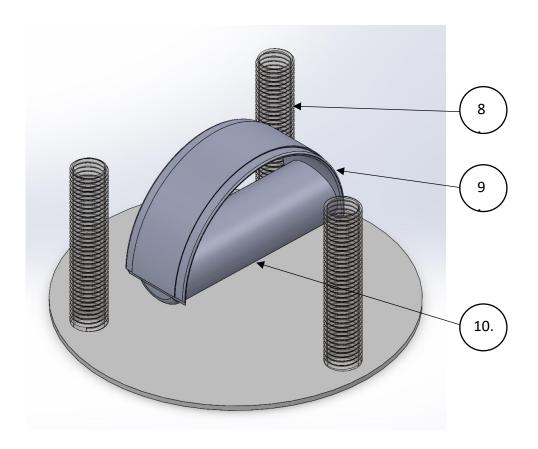
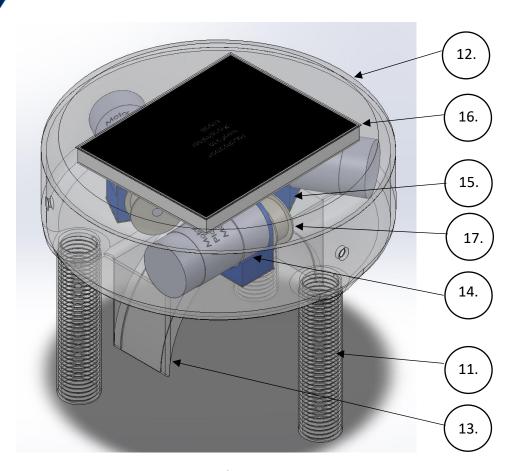



Figure 9: Sub-Assemblies Middle

Center Sub-Assembly

- 8. Lifting struts
- 9. Handle rotation mechanism
- 10. Handle

Important Sub-Assemblies

Top Sub-Assembly

- 11. Capture strut
- 12. Body shell
- 13. Handle Mount
- 14. Drive motor
- 15. Motor controller
- 16. Touch screen
- 17. Winch pulley

Figure 10: Sub-Assemblies Top

Updated QFD

		Technic	cal Requi	rements					Compet	titiv	e Analysis						
Customer Needs	Customer Weights (1-5)	Production Cost	Speed	Force	Position Tracking*	Device Size*	Α'n	N/A	1 Poor	2	3 Acceptable	4	5 Excellent				
Affordability	5	9			3	3			AB				С	Relations	hips:		
3rd Dimension Movement	4	3	1	1		1			С				AB	9	3	1	
Precision and Accuracy	3	3	9	9	9						С			Strong	Moderate	Weak	None
Size	4	3	1			9			В		A		С	Legend:			
Cosmetics	1	1				1				С	В			Α	Armeo Sp	ringPro	
User Friendliness	5	3				9				Α		В	С	В	ArmMotu	s M2 Pro	
Technical Requirement Uni	ts	Dollars (\$)	Meters per Second (m/s)	Newtons (N)	Millimeters (mm)	nches (in)								С	The Hams	ster	
Technical Requirement Tar		1000	1	10		8x8x8								_			
Absolute Technical Importance		31	42	35													
Relative Technical Importar		5	3	4	2												

Ball Bearings Lifetime Estimation

Assumptions

The weight of the average male arm is 5.7 pounds a female is 4.97.

The fastest the ball bearings will be spinning is 1m/s Accounting for the estimated weight of the robot, the equivalent dynamic load is 26.7 newtons split across the bearings.

(1/2 inch) ball in a bearing has an approximate C value of 500-1000 N so a C of 800 is reasonable For this estimate p will be 3 as if it was in a cage

Equations

$$L_{10} = \left(rac{C}{P}
ight)^p imes 10^6 ext{ revolutions } N = rac{ ext{Surface Speed} imes 60}{\pi imes ext{Ball Diameter}}$$

$$L_{10h}=rac{L_{10}}{60 imes N}$$

Validation

$$L_{10} = \left(rac{800}{26.7}
ight)^3 imes 10^6$$
 Which results in 2.686*10^10 revolutions

2.686*10^10 revolutio

$$N=rac{1 imes 60}{\pi imes 0.0127}$$

Giving 1507.96 RPM

$$L_{10h} = rac{26.86 imes 10^9}{60 imes 1508}$$

Resulting in 298,117 hours

But since it is a loose ball bearing, we must estimate only having half this lifetime giving us 150 thousand hours roughly.

Figure 11: ball bearing validation

Battery Power

Guiding Assumptions:

- (1) Perfect cells (no variation in V or I)
- (2) No cycle variation

Equation (Batteries in series)

Vtot = V X n (n is number of batteries)

 $Vtot = 14.8 = 3.7 \times 4$

Itot = I

Itot = 9,900 mA

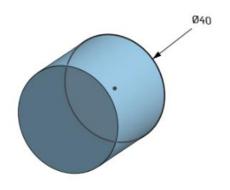
Ahtot = Ah

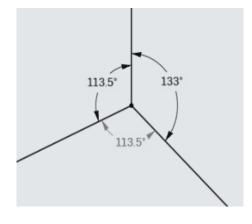
Ahtot = 9,900 mAh

Validation

Part	# of Parts	Amps Req. (I)	Voltage Req. (V)	Total Amps Req.
MS9025v3 Gimbal Motor	4	1.78	7.4-24	7.12
Arduino Uno Rev 3	1	0.05	6.0-20	0.05
Raspberry Pi 5	1	5	5	1.7
LCD Display	1	1.0/2.0	12.0/5.0	1
Motor Controller				
(Included in Motor)	N/A	N/A	N/A	N/A
Step-Down Voltage Converter	N/A	N/A	N/A	N/A
Total	7		12	9.87

Figure 12: Individual Power Requirement


Anchor Distance for Motor with 1200 RPM max and 1m/s speed


Angle of cables with 1200 RPM motor & 40mm shaft 1 m/s to RPM $(v/C)x60=(1/(0.04\pi))x60=\underline{477.5RPM}$ Find θ at 1200 RPM θ =arccos(447.5/1200)=66.5° 66.5x2= $\underline{113}$ ° Max angle to maintain 1m/s movement

Anchor distance for 12in or 30.48cm workspace Using calculated angle value and Law of Sines $(\sin(113.5)/x=\sin(6.5)/15.24) + 15.24cm$ Anchor point from center (x) = 125.3cm or 46.6in

For 50mm drum, $\theta = 143^{\circ}$, (x)=27.4in or 69.6cm

Validation

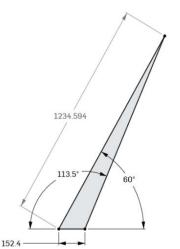
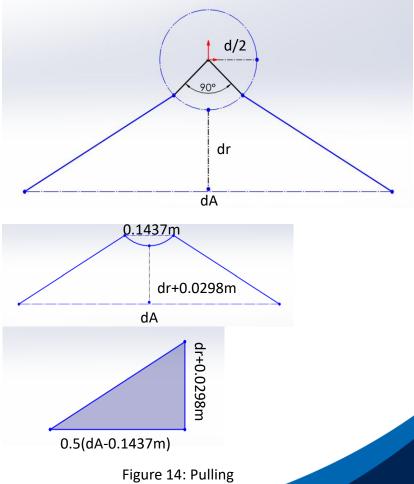


Figure 13: FBD validation


Pulling Force for 4 Wires

- d= diameter of robot= 8"= 0.2032m
- dr= vertical distance from robot to anchor pts
- dA= distance between anchor pts
- Assume setup is symmetrical

•
$$F_C = \frac{\sqrt{(0.5(dA - 0.1437m))^2 + (dr + 0.0298m)^2}}{(dr + 0.0298m)} * 5N$$

• For dr= 0.0254m and dA= 0.9144, F_c = 35.26N

Validation (Done by Hand)

Force Validation

Maximum Torque

Guiding Assumptions:

- (1) Static after moving to new position
- (2) Using winch diameter of 40mm
- (3) Using distances calculated by Justin
- (4) Tension on all cables is the desired F=10N

Calculations:

$$\tau_{XY} = F_{XY} * r$$

$$\tau_{Z} = F_{Z} * r$$

$$\tau = sqrt(\tau_{XY}^{2} + \tau_{Z}^{2})$$

Maximum torque each motor experiences:

 $\tau = 0.2 Nm$

Very close to our initial estimate of 0.254 Nm

Validation

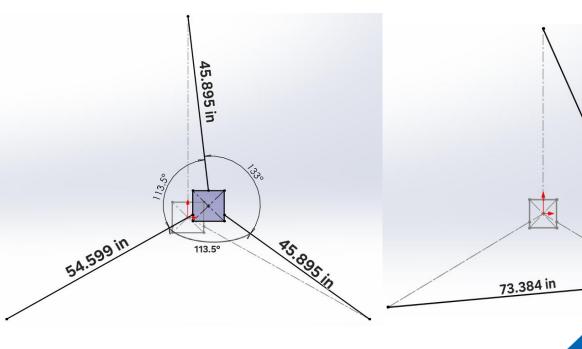


Figure 15: Pulling Force Validation

Calculations Table

Calculations Table									
Equation	How it's applicable.	What requirements these equations meet.	How we validated the answers obtained.						
t = I * h	Calculating minimum battery required to achieve desired run time.	Minimum run time of 30 minutes.	Obtained average power draw from online sources and used those to calculate time						
	Calculating position of robot as it moves closer to boundary	Position accuracy of 0.1mm	Solved equations by hand and used scale model to test angles						
	Calculates the minimum amount of stress our cable needs to able to withstand	To be able to withstand 10 N of Force	By finding the amount stress induced we can select an appropriate wire						
	Calculates the minimum amount of tension in cables	Minimum tension needs to be 2.2lbs or nearly 10 N	Using structural analysis, the equation can be solved by hand						
	Calculates the estimated maximum applied torque	Finding a motor that can output the required 10 N of force	Using a MATLAB script to calculate the torques at all positions the robot could be at						
	Calculates the estimated maximum applied torque using the factor of safety	Finding a motor that can output the required 10 N of force accounting for a factor of safety	Using a MATLAB script to calculate the torques at all positions the robot could be at						
) 0((),	Calculates net upward force needed to move an extended arm	Moving user's hand with an upward force of 10 newtons	Used human body mass percentages and solved by hand						
	Calculates downward force due to wire tension	Applying 10N force in horizontal and vertical directions	Solved by hand using force diagrams and position assumptions						

16

Calculations Table How it's applicable. What requirements these equations meet.

	Calculates the amount of roations a ball		
L10 = (C/P)^3*10^6	bearing will do in it's lifetime.	1m/s robot speed and lifetime of the bearings	solve by hand and by diagram

distance

N=(v*60)/(pi*D)Calculates a bearings RPM 1m/s robot speed

has

Equation

L10h=L10/(60*N)

θ=arccos(Winch

MPamg(L(0.5Pal))

 $F_v = F_t * cos(\theta)$

Flying Squirrel

3/31/25 John A.

RPM/Max motor RPM)

(v/C)x60

sines)

determines the max angle of cable at max motor RPM Selecting winch diameter

Convert velocity to revolutions per minute

Caluates how many lifetime hours a bearing

sin(A)/a=sin(B)/b (law of Calculates minimum anchor point distance while robot is at center.

M = MPhmg(L(1-0.5Phl))+MPfmg(L(0.5Pfl+Pal))+Calculates net upward force needed to move an extended arm

Calculates downward force due to wire

directions tension Table 2 Cont.: Calculations 17

Applying 10N force in horizontal and vertical Solved by hand using force diagrams and position assumptions 17

1m/s robot speed and lifetime of the bearings

determining winch diameter and anchor point

Cable length and motor torque calculations

Table

Moving user's hand with an upward

force of 10 newtons

How we validated the answers obtained.

solve by hand and by diagram

solve by hand and by diagram

solve by hand and CAD

CAD

CAD

by hand

solve by hand and verify angles and distance in

solve by hand and verify angles and distance in

Used human body mass percentages and solved

FMEA

					1					
Flying Squirrel		Development Team: Jonathan Avi Mathews	Donnellan, Justin Joy, Owen	Kehl, Joey	Page No. 1 of 3					
Bottom Plate		FMEA Number: N/A								
ALL						Date: 3/31/2025				
ALL										
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurrence (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action	
1 Roller Bearing	Surface Fatigue	Increased force to move robot	5	Assembly error	1	Pull with force sensor	1	5	Purchase high quality parts	
2 Base Shell	Brittle Fracture	Appearance	3	Impact loading	3	Visual inspection	2	18	Use high in-fill for plastic	
3 Battery	High-cycle Fatigue	Gradual decrease of run time	2	Overdischarging	2	Test with voltmeter	2	8	Revised higher stress test plan	
4 Microcontroller (Arduino)	Electrical Shorting	Causes robot to become inoperable	9	Assembly error	1	Run test program	1	9	None	
5 Microcomputer (Raspberry pi)	Electrical Shorting	Causes robot to become inoperable	10	Assembly error	1	Run test program	1	10	None	
6 Lifting Motor	High-cycle Fatigue	Reduction in performance of z- axis movement	7	Over voltage/current	2	Test with RPM, force, and voltmeter	1	14	None	
7 Drive Belt	Surface Fatigue Wear	Loss of z-axis movement	8	Poor maintenance	4	Visual inspection	1	32	Purchase high quality parts	

Flying Squirrel 3/31/25 Ryan D.

18

Table 3: FMEA

FMEA

lying Squirrel		Development Team: Jonathan Avi Mathews	Page No. 2 of 3						
Center Structure						FMEA Number: N/A			
LL						Date: 3/31/2025			
ALL					_				
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurrence (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
8 Lifting Strut	Surface Fatigue Wear	Loss of lifting performance	5	Overstressing	1	Ensure nut slides smoothly over lift screw	1	5	Purchase quality parts
9 Handle Rotation Mechanism	Surface Fatigue Wear	Increase handle rotation resistance	5	Overstressing	2	Rotate handle thorough many cycles to ensure smooth movement	1	10	Use high in-fill for plastic
10 Handle	Impact Fracture	Loss of handle	8	Impact loading	2	Visual Inspection	2	32	Use high in-fill for plastic
11 Capture Strut	Surface Fatigue Wear	Loss of lifting performance	5	Overstressing	3	Ensure nut slides smoothly over lift screw	1	15	Use high in-fill for plastic

						1			
Flying Squirrel		Development Team: Jonathan Avil —Mathews	nnellan, Justin Joy, Owen Ke	Page No. 3 of 3					
Top Plate		FMEA Number: N/A							
ALL						Date: 3/31/2025			
ALL									
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurrence (O)	Current Design Controls Test	Detection (D)	RPN	Recommended Action
12 Top Shell	Brittle Fracture	Appearance	3	Impact loading	3	Visual inspection	2	18	Use high in-fill for plastic
13 Drive Motor	High-cycle Fatigue	Reduction in performance of x,y-axis movement	7	Over voltage/current	2	Test with RPM, force, and voltmeter	1	14	None
14 Motor Controller	Electrical Shorting	Reduction in performance of all axis movement	7	Over voltage/current	2	Run test program	1	14	Purchase high quality parts
15 Winch Housing	Abrasive Wear	Inaccuracy of x,y-axis movement	4	Overstressing	2	Visual inspection	2	16	Use high in-fill for plastic
16 Winch Line	Creep	Inaccuracy of x,y-axis movement	5	Overstressing	3	Visual inspection	7	105	Test line weight
17 Screen	Impact Wear	Unable to program movement of robot	6	Impact loading	4	Power on	1	24	Purchase high quality parts

Flying Squirrel 3/31/25 Ryan D.

Testing Procedures

Methods

- Employ volunteers to test setup time
- Test manually to confirm battery life
- Use predefined position marks to test position accuracy
- Use luggage force sensor to confirm robot's ability to produce 10N
- Use robot on multiple work surfaces
 to test anchor integrity
- Manually confirm lack of motor backlash, use force sensor to test for internal friction
- Test lifting capability by use
- Some requirements will be automatically met during design

Acceptance

- 1 Minutes set up time.
- The battery life lasts at least 30 minutes
- It will pass the test if the robot is * accurate in delivering the 10N
- If the robot is operational without external help from initial setup.
- If the motor position is acuate to within 1mm.
- If the lifting mechanics can lift 10lbs

Equipment

- Functioning prototype
- Multiple work surfaces (Rough, smooth, varying thickness)
- Way to mark position destinations on surface
- Weight sensor
- Volunteer Testers
- Electrical testing equipment
 - Battery testing equipment
 - Digital Multi-Meter
 - Battery load tester

Gantt Chart and Schedule

Figure 16: March, April, and May Tasks

- Start work on Report 2
- Continue client meetings
- Complete torque/force calculations
- Promote fundraiser
- Work on individual analyses
- Continue adding detail to CAD model

Flying Squirrel

SIMPLE GANTT CHART by Vertex42.com

https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html

TASK	ASSIGNED TO	PROGRESS	START	END
August				
Define goals			8/25/25	8/25/25
Homework 00			8/25/25	9/1/25
Project Management			8/25/25	9/1/25
September				
Meetings			9/1/25	9/1/25
Self-Learning/Analysis			9/1/25	9/8/25
Client Meeting		•	9/4/25	9/4/25
Define scope			9/4/25	9/6/25
Engineering Calculation	s		9/1/25	9/8/25
Meetings			9/8/25	9/8/25
Client Meeting			9/11/25	9/11/25
Meetings			9/15/25	9/15/25
Client Meeting			9/18/25	9/18/25
Hardware Status Update	е		9/22/25	9/22/25
Peer Eval 1			9/22/25	9/22/25
Client Meeting			9/25/25	9/25/25

Project start: Wed, 8/20/2025

Display week: 1

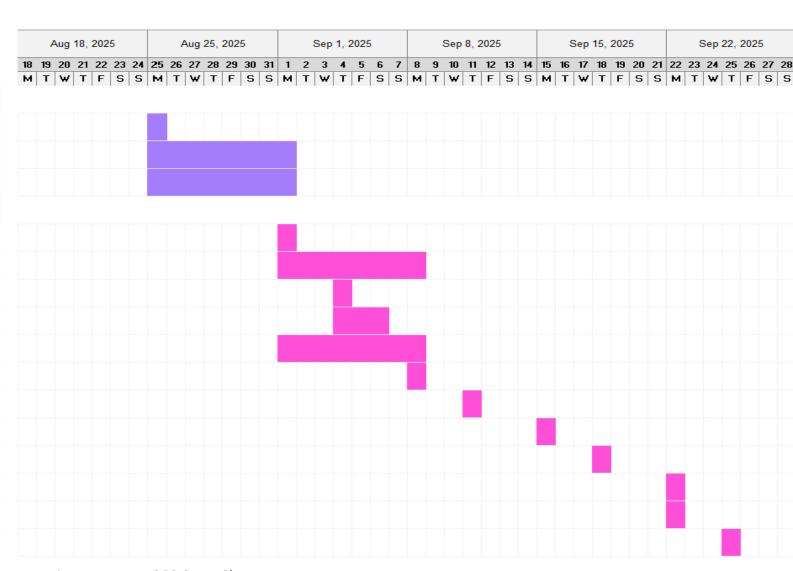


Figure 17: ME-486C Gantt Chart

Budget

Current Project Budget	\$3750
anticipated expenses	-\$990
Actual expenses to date	-\$77.87
Resulting Balance	\$2760

Table 4: Budget

Fundraising

Fundraiser at Cane's on Milton on 4/3/25.

25

Flying Squirrel

3/31/25 John A.

Bill of Materials

	Item	Quantity	Cost Per Unit (\$)	Final Amounts(\$)
1	3-axis force sensor	1	290	290
2	Optical encoder motors	4	75	300
3	18650 Battery	3	25 (sold in 4 pack)	25
4	Braided Fishing Line	1	30	30
5	Circuits and wires	1 Sold as a set	45	45
6	Misc. Electronics and plastics	1	100	100
7	Stainless Steel Ball Bearings	1 sold in large set amounts	6	6
8	Suction Mechanism	3	15	45
9	C clamps	3	5	15
			Final Subtotal=	856

Sub-System Prototype 1

Figure 19: Taxidermy Squirrel

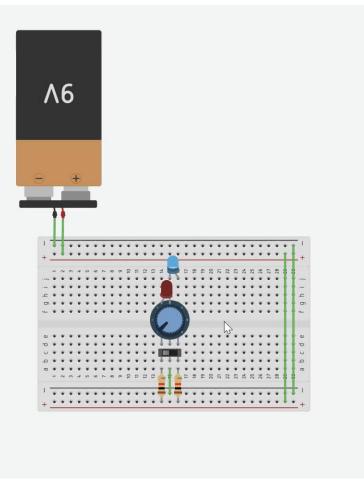
Approximately 13.75% Total volume of flying squirrel

Question(s) this prototype answered:

Face Smasha' ver. 1.0:

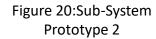
- Cables mounted on top or bottom?
- Is 4" enough for the average hand?

Face Smasha' ver. 1.01:


Cables mounted to both top and bottom?

Face Smasha' ver. 1.1:

 How well do ball bearings roll on 3D printed surface?


Sub-System Prototype 2

- Simulation uses a slideswitch, actual prototype will use H-bridge connector.
- Simulation uses a potentiometer, actual prototype will use pulse width modulation.
- Prototype should not have any mechanical switches.

Question(s) this simulation answered:

 What is the simplest circuit we can have to reverse direction of motors?

XR Demo

Questions that this model answered:

• With the 3 lift points in a triangle pattern, will the wrist come into contact with the 2 next to it?

31

